Nơ-ron là đơn vị cơ bản cấu tạo hệ thống thần kinh và là một phần quan trọng nhất của não. Não chúng ta gồm khoảng 10 triệu nơ-ron và mỗi nơ-ron liên kết với 10.000 nơ-ron khác. Ở mỗi nơ-ron có phần thân (soma) chứa nhân, các tín hiệu đầu vào qua sợi nhánh (dendrites) và các tín hiệu đầu ra qua sợi trục (axon) kết nối với các nơ-ron khác. Hiểu đơn giản mỗi nơ-ron nhận dữ liệu đầu vào qua sợi nhánh và truyền dữ liệu đầu ra qua sợi trục, đến các sợi nhánh của các nơ-ron khác. Mỗi nơ-ron nhận xung điện từ các nơ-ron khác qua sợi nhánh. Nếu các xung điện này đủ lớn để kích hoạt nơ-ron, thì tín hiệu này đi qua sợi trục đến các sợi nhánh của các nơ-ron khác. => Ở mỗi nơ-ron cần quyết định có kích hoạt nơ-ron đấy hay không.
Tuy nhiên trong deep learning chỉ là lấy cảm hứng từ não bộ và cách nó hoạt động, chứ không phải bắt chước toàn bộ các chức năng của nó. Việc chính của chúng ta là dùng mô hình đấy đi giải quyết các bài toán chúng ta cần.